Characterization of three forms of light-harvesting chlorophyll a/b-protein complexes of photosystem II isolated from the green alga, Dunaliella salina.
نویسندگان
چکیده
Three forms of light-harvesting chlorophyll a/b-protein complexes of photosystem II (LHC II) were isolated from the thylakoid membranes of Dunaliella salina grown under different irradiance conditions. Cells grown under a low intensity light condition (80 micromol quanta m(-2) s(-1)) contained one form of LHC II, LHC-L. Two other forms of LHC II, LHC-H1 and LHC-H2, were separated from the cells grown under a high intensity light condition (1,500 micromol quanta m(-2) s(-1)). LHC-L and LHC-H1 showed an apparent particle size of 310 kDa and contained four polypeptides of 31, 30, 29 and 28 kDa. LHC-H2, with a particle size of 110 kDa, consisted of 30 and 28 kDa polypeptides. LHC-L contained 7.5 molecules of Chl a, 3.2 of Chl b and 2.1 of lutein per polypeptide, analogous to the content in higher plants. LHC-H1, with 5.6 molecules of Chl a, 2.5 of Chl b and 1.8 of lutein per polypeptide was similar to that in the green alga Bryopsis maxima. LHC-L and LHC-H1 maintained high efficiency energy transfer from Chl b and lutein to Chl a molecules. LHC-H2 showed a high Chl a/b ratio of 7.5 and contained 3.4 molecules of Chl a, 0.5 of Chl b and 1.4 of lutein per polypeptide. Chl b and lutein could not completely transfer the excitation energy to Chl a in LHC-H2.
منابع مشابه
A chlorophyll a/b-binding protein homolog that is induced by iron deficiency is associated with enlarged photosystem I units in the eucaryotic alga Dunaliella salina.
Adaptation of the halotolerant alga Dunaliella salina to iron deprivation involves extensive changes of chloroplast morphology, photosynthetic activities, and induction of a major 45-kDa chloroplast protein termed Tidi. Partial amino acid sequencing of proteolytic peptides suggested that Tidi resembles chlorophyll a/b-binding proteins which compose light-harvesting antenna complexes (LHC) (Vars...
متن کاملNaCl-induced phosphorylation of light harvesting chlorophyll a/b proteins in thylakoid membranes from the halotolerant green alga, Dunaliella salina.
Light could induce phosphorylation of light harvesting chlorophyll a/b binding proteins (LHCII) in Dunaliella salina and spinach thylakoid membranes. We found that neither phosphorylation was affected by glycerol, whereas treatment with NaCl significantly enhanced light-induced LHCII phosphorylation in D. salina thylakoid membranes and inhibited that in spinach. Furthermore, even in the absence...
متن کاملAssociation of chlorophyll a/c(2) complexes to photosystem I and photosystem II in the cryptophyte Rhodomonas CS24.
Photosynthetic supercomplexes from the cryptophyte Rhodomonas CS24 were isolated by a short detergent treatment of membranes from the cryptophyte Rhodomonas CS24 and studied by electron microscopy and low-temperature absorption and fluorescence spectroscopy. At least three different types of supercomplexes of photosystem I (PSI) monomers and peripheral Chl a/c(2) proteins were found. The most c...
متن کاملStructural Aspects of Photosystem I from Dunaliella salina.
A native PSI complex and a PSI core complex have been isolated from the halophilic green alga, Dunaliella salina. The composition and properties of these complexes are similar to previously described PSI complexes from spinach membranes. By growth on (14)C-NaHCO(3), it has been possible to isolate uniformly labeled (14)C-PSI complexes in order to determine PSI subunit stoichiometry. This analys...
متن کاملInduction of the De Novo Formation of the Photosystem I-Related Light-Harvesting Chlorophyll Protein Complex LHCPa by Photoheterotrophic Nutrition.
The green alga Chlamydobotrys stellata contains in addition to the normal light-harvesting chlorophyll protein complex LHCPb a special LHCPa which is free of chlorophyll b and connected only to photosystem I (Brandt, Zufall, Wiessner 1983 Plant Physiol 71: 128-131). The kinetics of these two LHCP forms were analyzed during the transition in nutrition of the alga from autotrophy to photoheterotr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant & cell physiology
دوره 41 5 شماره
صفحات -
تاریخ انتشار 2000